Nettime: A Networkological Approach to Time and Temporality, via Science and Math, Part One

What is time? Surely time can be simple, as measured by clocks of various sorts. Distinct rhythms of a pendulum, or changes in number on a digital clock. The predictable movement of something that goes back and forth, an oscillator which covers a repeatable distance of space each time. But if we define time this way, we use notions like “repeat” in our very definition, presupposing that which we are attempting to define. Or perhaps, as suggested by famed theorist of time Henri Bergson, we are simply spatializing time by definining it this way. Clocks, after all, change physicially, and this isn’t time, it’s space. To imagine time as the movement from one moment to another, like “beads on a string,” is a spatial model.

Nevertheless, space and time are inestricably linked. It always takes time to cover an expanse of space, at least in the everyday world, and whatever takes up time seems to also occupy space. Whatever time is, it seems bound to a notion of space, even if the relation between these is anything but simple. Speed is simply the rate at which we cover space in time, converting one into the other. It can take me three hours to walk across town, or ten minutes by car. Inversely, endurance is simply the manner in which space is occupied by the same thing over time, and this indicates for us that, in relation to other endurances, something has “occupied” space. A stone occupies space, for me, at least, when it appears the same in relation to what’s around it for a period of time. This appearance continues, “repeats” itself, even when I close and open my eyes, or try to mash another stone into it, and realize, they won’t blend, even as coffee and milk seem perfectly happy to cohabitate in space, even if they displace each other a bit, but different colors of light seem to be able to overlay and blend and share space with hardly a problem. The displacement or occupation of space is always relative, and not only to the maps of occupations and displacements which are a spatial layout, but also in regard to time, for occupation and displacement, of objects or appearances, always happens in relation to time.

Models of Time: Philosophy, Science, Mathematics, Literature, Film, and Everyday Life

In the history of philosophy, definitions of time abound, and with this, it becomes possible to list off differing notions of time, the Augustinian philosophy of time, the Hegelian model, the Bergsonian model, the Deleuzian model. Within the history of science, there are also named models of time, such as Newtonian time, Minkoswki time, Einsteinian spacetime, Quantum spacetime. The time of Newton is similar to that of “beads on a string,” and yet, because it involves calculus, with its capacity for infinite division, the beads can be of any size, surely like physical beads on a physical string in physical space. With Minkowski, the time of physics began to compress and stretch, and with Einstien, time began to warp in relation to gravity, the famed “theory of relativity,” which introduced such new notions of “curved spacetime,” perhaps better visualized as “scrunched” or “expanded” spacetime, into physics.

Mathematicians, of course, had already begun to imagine such notions, and these seemingly unreal formulations were influential on the physicists who found more concrete applications for them. Riemann’s notions of quilting spaces of various types of scrunched or expanded spaces together to produce a monstrous “Franken”-space, a patchwork of geometries, each, of which would experience time differently in relation to these spaces, paved the way for Einstein. As did the work of Felix Klein, who famously realized that just as painters had been converting four-dimensional space and time into flat two-dimensional depictions for centuries, so there were ways to convert forms of space into each other by transforming and warping them, turning a sphere into a circle and an ellipse or back, simply in regard to the perspective one took on them. In fact, we often transform spaces and their shapes into one another simply by walking around them. All of this happens in and through time, space is never devoid of time, and vice-versa, and Einstein built upon this, giving rise to the stretching and bending spacetime spoken of by relativity theory. Quantum physicists, building upon this further stilll, describe a world in which spacetime is even stranger, permeated by jumps and fuzzinesses of various sorts, in which it is possible to either go back or forward in time, or act in ways which are fundamentally indistinguishable from this.

Beyond philosophy and science, there is also the time of other disciplines, the time as described by historians, ethnographers, sociologists. There is also the time described by literature, so many types of narrative time. And narratives aren’t only present in fiction, but also arguments (“if A and B, then C”), jokes, political narratives (“this war is different from the last one”), economic narratives (“this crisis was caused by this or that”), therapeautic narratives (“my parents help explain why I’m this way”), or the various other types of narrative structures we use to help us structure our lives. Or consume for pleasure in so many works of art. Language is itself fundamentally temporal, verbs producing transits between nouns, in regard to so many qualities and connectors, all produced by grids of symbols of various sorts that we arrange and rearrange in space and time like so many bits of a hypercomplex game whose stakes are often the very stuff of reality.

Beyond language, however, there are many ways in which we can bring the time within us into resonance with various aspects of the world around us. The time it takes to walk through a building, for example, in which one can walk faster or slower, loop back to where one started. Or subway time, whereby slices of an urban landscape are sutured by voyages of varying speed and directness within looping underground passageways which seem like so many virtual voyages into other dimensions. Or the time travels of filmic narratives, which by means of narrative conventions such as time-travel, can loop and bend.

If the time outside us seems relatively stable in relation to a variety of spatial layouts, however, our lived, “internal” time often seems the strangest of all. Memory flashes us backwards in time and permeates our present in varying degrees, even as anticipation, the futureshock of our past projected into our future, really, permeates our past and digs within it for useful memories which it them throws in front of us, permeating our present from the other side. Our future and present are saturated with the memories we use to frame and imagine them, just as our past is always organized and sifted through by means of the fantasies we have about future and present which help us organize our imagined future actions, hopes, and dreams. Separating past, present, and future in lived time, the time inside of us, often seems a paradoxical enterprise at best. Philosophers and mystics have long wondered whether or not the past really exists, or the future for that matter, as we never seem to “really” get to either, we live in what seems like an eternal present. And yet, this present is so full of past and future, memories and anticipations, hopes and fears based on those experienced previously, do we ever get the pure present? It vanishes, much like the past and future do. All seem unreal when you focus on them, as if time was only ever where you weren’t looking. And yet, mystics through the ages have countered that it is possible to expand time by meditating on this eternal present to expand it beyond time and space, to reach eternity within each and every moment and fragment of matter or space.

Taken to its extreme, inner, lived time begins to sound almost as strange as that of the physicists or mathematicians, microcosm refracting macrocosm or vice-versa. Then again, the physical world seems pretty stable unless we stray far from the “normal” conditions of the everyday, while lived internal time seems normally only when we pay attention to how strange what seems “normal” to us actually is. Either way, the notion of time is used to describe these both, as aspects of the same thing.

Is Time a Word?: The Linguistic Argument, and Beyond

Perhaps then the issue is with language, perhaps the most complex creation of humanity. Some philosophers have gone in this direction. Our language reifies, which is to say, “thing-ifies” whatever it describes. Words fix the flux of the world into static snapshots which don’t actually correspond to the much more labile conditions of the world beyond it. The useful fiction of words perhaps distorts or even creates what we experience as time. Nouns are perhaps the worst culprits, at least verbs are somewhat more honest, and adjectives allow us to imagine aspects things share despite space and time, while connecting words just do the dirty work of bringing these all together and putting them in motion. And it is in the motion that we rediscover the time killed by nouns and other less guilty words, the motion of producing and consuming sentences, and getting around the deceptive periods which separate sentences like so many false idols of space within time. Books spatialize time, then, perhaps as much as clocks, or films. Or bodies, which localize time within these lumps of moving flesh, and curl it up within these meat-computers we call brains, who then produce things like words which segment the world into words and then reassemble them to produce a parodic representation of the world beyond it.

But language certainly can’t be the only culprit. Films are also guilty, they slice the world up into snapshot images which are reassembled into moving images which are warped reassemblages which resonate with the time of the world, yet are fundamentally distinct temporal creations. Our everyday lives as then equally as suspect, as wel slice the world into bits, like so many moving cameras we move our perspectives around, dicing up the world from our own points of view, and then reassemble them in the fuzzily warped and edited storehouse we call memory. And if, as scientists argue, our present and future are threaded through with this highly suspect memory archive, then our present should hardly be trusted, it is ultimately a personal language of sorts, whose letters and words are the memories we use to help us recognize, describe, and re-present the present experiences we filter and categorize before we even realize we have done so. Perhaps the very notion of an ego is simply the deepest such memory-word we know, the “I” around which our language of experiences congeal.

Maybe this all because we have bodies which warp our experiences, turning moving light particles into sight, moving air particles into sound, translating our sense-data into memory-recognitions, and all in relation to our evolutionary heritage which biases us to look for certain experiences over others. Whatever time or space we ever experience is ultimately the result of the way in which our biological evolution evolved us to experience it, in ways which it felt were most likely to help us survive. And if our culture, our films and our words and so much else, were created from this foundation, might they not be simply more complex warpages of the world, inheritors of the biology which evolved us with its own agendas? Of course, biological evolution is only one level of complexity, the physical world had to “evolve” up to the point at which it could “evolve” organisms, and the difference between complex physical systems and living ones seems ultimately only a matter of degree. A whirlpool seems to have a “life of its own,” and to “want” to continue whirling the way it does. To say this isn’t proto-life is like saying that organisms aren’t hyper-matter. It’s all a matter of degree, or perspective.

Either way, if time is ultimately a word, and words are biased distortions of the world beyond us, this should hardly be reason to stop there and call it a day. There are so many levels of distortion, why fetishize language? Our bodies distort, our brains distort, our sense organs distort, our evolution distorts. It’s all distortion, all the way down. Or translation and creation, depending on how you see it. Matter distorts, and perhaps is this very distortion of some primordial energy, or something deeper still, as scientists believe that matter and energy are simply differing sides of the same. Perhaps space and time simply are distortions then too. Space, time, matter, energy, all distortions of some deeper matrixBut matrix of what? Space, time, matter, and energy, these are abstractions of our experience, which seems only ever filtered by our bodies, brains, psychological biases, cultural biases, the list goes on and on. Perhaps the universe is little more than a set of translations of experiences into each other, and matter, energy, space, and time are simply the terms we use to organize the most stable of these, at least, as the world appears to us.

Is Time Real: Fantasies of Idealist and Materialist Notions of Time

Perhaps, as some have argued, it’s all a simulation, like we see in films such as The Matrix (1999). And so studying film, or virtual reality, then perhaps isn’t such a strange place to go to study time. That said, whatever time is, its as much there as it is in matter or energy. For even our most indubitable experiences, whether personal or shared with others, are only ever known as our experiences. Even if I perform a science experiment, and a community of scientists verifies it, it could be a dream, or I could be one of the famed “brains in a vat” which philosophers sometimes imagine. It could all be a simulation. And there is ultimately no way of knowing if when I see a bunch of scientists verify my experiment, that they aren’t all part of a dream or simulation. Perhaps there are glitches that might give it away, but even these could be parts of a larger simulation or dream still. This is why some scientists have argued that our universe could be one enormous simulation, a holographic projection, and they have even tried to develop experiments that could test if this were the case. But what then would be the difference between virtual and physical reality? Should we care?

Likewise with the physical world. Even if I only ever experience it through my own experience, the aspects of my experience that seem shared with others, which is to say, the so-called “physical” world, even if it’s not really there, even if other people are simply figments of my imagination, they seem so stable and follow such predictable rules, that they can treated as if they were “real.” In fact, even if they are an illusion, what difference would this make, so long as my whole life were this illusion? Of course, even if we were to learn that the whole world of our experience were a simulation, then we could start to wonder if the machine producing the simulation weren’t also a simulation of some deeper simulation.

Such an infinite regress occurs as well when it is not idealism taken to its extreme, but also materialism. If all is matter, then some of this matter give rise to illusions, images, like our sense experience and dreams. But perhaps this is just how matter feels other matter. Our brains experience our sense organs, which experience the matter of the world, it’s all matter all the way down. And thoughts then are just how our brains, which are matter, experience each other. Perhaps then experience, including that of sensation, thought, and feeling, is simply how matter reacts with other matter, and how this is experienced from the inside. Perhaps then all matter, including molecules, feel each other in some very simple, primordial way, and when matter gets more complex, it feels more complexly, and human thought is simply this.

Idealism has difficulty accounting for the physical world, and yet, taken to its extreme, idealism deconstructs itself back into the physical world, or cuts the cord to reality entirely, an impossible situation and/or infinite regress. Likewise, materialism has difficulty accounting for the inner worlds we experience, and seems on the verge of arguing that inner experience is impossible, or it pushes it into ever smaller and more distant realms of matter (ie: the body, the brain, the prefrontal cortex) in what is ultimately an infinite regress verging on the soul. No wonder so many of the most materialist scientists find that there’s a need for a ghost in the machine. For taken to its extreme, materialism ultimately deconstructs, hits paradox or infinite regress, or turns into its opposite, namely, a world in which all matter must have something like experience, even in simplest form.

And yet, even though materialism and idealism both deconstruct, perhaps this isn’t the worst place to be, for since experience is all we have really ever known, perhaps matter and appearance are sides of each other, which is to say, of experience, which is all we ever, well, experience. Space, time, matter, and energy, these all seem aspects of experience then as well. The experience we share is called the physical world, that which we don’t is our “inner” world, but it’s all appearances of varying degrees of stability. Those appearances which appear the most stable we call “real,” and those which are less stable are “merely” appearances, but since it seems there’s no firm way to draw a line between these, these are perhaps differences of degree.

A Matrix of Experience Beyond Binarity

Perhaps we can start from here, from experience, which is all we have ever known. Any experience we have ever had of a world beyond us, or of other experiencing consciousness, is only ever aspects of our experience, which isn’t merely our experience, but also the world. These are two sides of each other, like two sides of a sheet of paper, inseparable. We can’t imagine the world but through ourselves, and vice-versa, and each, like materialism and idealism, ultimately deconstruct each other, or giving rise to paradox, infinite regress, or some sort of fuzzy or oscillating mixture of these. One can either try to ignore this, and cling to ultimately relative notions like “self” or “world,” or embrace this, and realize that self and world are interdependent notions, aspects of each other, and of the more encompassing situation of which they are aspects, and which is all we have ever experienced.

Let’s call this grounding situation “experience.” From such a perspective, “my experience” would be that most fundamental aspect which seems unique to me, and those aspects which seem, from within “my experience” to exceed it somehow, to be that of “the world,” of which the experience of “others” is a part. For there do seem to be experiences beyond mine, as attested to by the reports of other experiencers, even if I only ever access those through my experience. “Experience” as such, then, would be the term used to describe the seemingly larger whole of experience of which mine is an aspect. My experience would then be an opening onto experience as such, included and including it, as paradoxical as this might seem to more traditional forms of logic. Whatever logic there is in the world, it seems to derive from this, so if we want to call it paradoxical, so be it, the foundation from which logic emerges is paradox, such that paradox would ultimately, then, be the foundation of logic, and not vice-versa.

Space then could be seen as the most stable general network of shared experiences among experiencers. For example, if I move an object, and my friend sees this, we both see the object moving, but also the world of experience around this staying stable in relation to the moving object. The greatest stability within this seems to be what we call space, the invariant network which underlies and organizes that which is common to the experiences which experience within experience. While this may warp and bend according to gravity, and ultimately, acceleration, as the experiments used to ground relativity theory seem to show, then perhaps I would have differing experiences than another experiencer. And yet, a third party would be unable to tell which of us is having the “correct” experience of space. Space then would be that within experience which seems to give rise to all these experiences of space by various experiencers.

All of which shows why it makes sense to argue that there needs to be something producing all our particular experiences within experience, and why experience is still ultimately only ever the experience of experiencers, such that perhaps experience as such is an abstraction from the experience of experiencers, a projection of these, an ideal assemblage of all the experiences of all experiencers. This helps explain why the term experience is worth retaining, because there has to be something which relativizes these experiences, in regard to which they are “only” experiences, which is to say, if there were nothing underlying or producing these experiences, it would be redundant to call them “mere” experiences. But this is hardly the case, because experiencers don’t always have the same “external” experiences, and while these issues can usually be resolved by a third party, this isn’t always the case. But if we examine further the distinction between “internal” and “external” experience, this issue gets fuzzier still, for these are also merely aspects of the same, a question of degree. Is the experience of “my” eye the same as “my” experience? What about that of “my” brain? Is the world “mine”? Or my “ego”? Like “self” and “world,” these notions too will deconstruct.

Likewise with that between a particular experience and experience as such, or between experience and that which produces it. But the slippage can be at least partially stabilized by allowing all these notions to be relative to the context which produces these, such that they cease being reified notions, and work more as positions within networks of aspects of a whole which always exceeds the sum of its aspects.

From such a perspective, it’s possible to speak of experience as the ideal extrapolation of all the particular experiences of experiencers. Each experiencer has a “world” of experience, and the sum total of these, greater than the sum of its aspects, is “the” world, the ground of experience as such. The world would then be within all words, but yet always in excess of any, aggregate, and all, for it seems this world is always changing, surprising us, and hardly capturable by all worlds, even in the aggregate, similarly to experiences and experience as such.

In fact, it seems that any particular aspects of the world, or series of these, is always exceeded by the world. This seems to be the fundamental quality of the world of experience itself. Let’s call this “matrix” or “oneand.” It is matrix because it gives rise to the world and experience, and is present in any and all aspects thereof. And it is “oneand” because it is always in excess of any attempt to reduce it to any reified unity. Matrix, or oneand, would then be the very stuff of the world of experience itself. Any and all aspects of this would be only aspects thereof. Any segment, discrimination, unity, binary, quality, motion, concept, term, self, world, or anything else, would only ever be an aspect of matrix, or oneand, which is grasped in each and all experiences, and is that of which experienced, experiencer, experiencing, and experience are composed as so many of its aspects. Matrix, or oneand, is beyond whole and part, container and contained, or any other binary distinction, as well as beyond any unitary description, such as experience or appearance, or even attempts to be described by notions such as matrix and oneand. These two names, placeholders and useful representations at best, are simply two aspects of this fundamental stuff.

Martrix, or oneand, is that which is beyond and and all attempts to grasp it, even if present in aspect within all of these. To use the language of many Asian philosophies, it is nondual. That is, in regard to any “a” and/or “b” which could be said about it, or any other set of statements or changing or nesting thereof, it would be neither a nor b, both a and b, neither “neither a nor b” nor “both a and b,” and both “neither a nor b” and “both a and b.”

All of which may seem nonsensical, or useless, irrational, illogical, or paradoxical, or whatever terms one might want to apply to this sort of thinking. Perhaps quasi-religious, or mystical, or deluded. But the logic behind the argument which brought us to this place is hopefully apparent. Logic and argument ultimately find their foundation in something ultimate and paradoxical like this, or are limited fictions. The irrational, paradoxical, useless, nonsensical, these are part of our world too, only aspects of the whole of which its parts are only ever that.

What’s more, science and mathematics are increasingly tending in such a direction. Early in the twentieth century, both physics and mathematics had a “foundations crisis” in which they began to question their most basic presupositions, and the results unsettled the seeming foundations of both. In phsycis, relativity theory and quantum physics demonstrated that any attempt to “reify” any aspect of our world gives rise to what, to ordinary thinking, would be paradoxes, such as incommensurable relative experiences, or uncertainties so uncertain that it’s ultimately impossible to determine if it is the subject performing the experiment, or the very substance of the world, which is uncertain, such that the very distinction between these seems to begin to break down. Physicists are still attempting to deal with the fallout from the “uncertainty” at the heart of relativity and quantum physics. Whether their interpretations of the data take a subject-oriented, epistemological tilt (ie: the Copenhagen Interpretation), or a more substance-oriented view whereby it is the world which has this uncertainty within it (ie: Bohmian interpretation), or rather opt for infinite regress (ie: Many Worlds interpretations), these are ultimately aspects of the same, which is to say, the manner in which, for whatever reason, its seems that the experience of the world, when pushed to its extremes, will deconstruct, turn into its opposite, produce infinite regresses, or otherwise resist extreme reification, and the concomitant binarization of inside and outside of a reification which always comes with this.

In mathematics, the situation is hardly different. Around the turn of the century, mathematicians attempted to see if math could be used to “prove” its own assumptions. And this lead to paradox, infinite regress, or aspects of each, depending on how you interpret this. The issue was, in short, whether or not the “set of all sets” could be considered a set. That is, whether or not the most encompassing way of talking about the world, the “set of all sets,” could itself be considered an aspect of the world or not. If yes, then there must be something which could encompass this set, a yet more encompassing entity, for any set could always be a member of another set, thereby leading to infinite regress. But if it wasn’t, then the “set of all sets” was incoherent, a set that wasn’t a set, or a new type of set, one which fundamentally recast what it meant to be a set, for it paradoxically had a sort of infinite regress as part of its very definition, that which, according to what it means to be a set, would make it not a set. Contradiction, inconsistency, or incoherence, these were the options. And this led Kurt Godel in 1929 to prove, using the tools of the mathematics of set theory, that set theory was at its base one of these three, depending on how you wanted to frame the issue, and that there was no way to get around this and still be doing mathematics of set theory. And the results were generalizable from set theory to the rest of mathematics, at least to an extent that the results of Godel’s proofs destroyed any attempt to search for the foundations of mathematics in anything resembling this way. From here, the search for the foundations was in something, well, more slippery, paradoxical, and relative, in ways which uncannily parallel that in physics.

Beyond Reification

All of which is to say that the notion of matrix, or oneand, in the manner described briefly in the preceding sections, as the all of which any is composed, which is beyond reification, whole and parts, self and world, and yet that of which these are aspects, is resonant with the findings of math and science. That is, no matter how one interprets the data of relativity and quantum physics, data which have been reproduced and checked to such a degree as to be accepted unquestionably by the scientific community, the fundamental stuff of our world functions something like what I’m describing as matrix or oneand. Likewise, the foundations of mathematics requires something like a “set of all sets” or “number larger/smaller than others,” of which all others are aspects. If science is a form of materialism, and mathematics a form of idealism, they deconstruct their own foundations similar to their philosophical cousins, and are faced with paradox, fuzziness, or infinite regress. To use the language of mathematics, the options are incoherence, inconsistency, or incompletion, while to use the language of physics, the various attempts to explain away uncertainty (such as ontological Bohmian approaches, epistemological Cophenhagen approaches, or Many Worlds approaches). Ultimately, each of the three options in a given field are aspects of each other, and between and amongst these disciplinary views on the world, so many lenses on experience, these are aspects of each other. In fact, the foundations of any lens on the world seem to run into versions of this trio in one form or another, whether these lenses focus on inner experience or the physical world, or any other way of slicing up experience.

Matrix resists being ever turned into a one, and so, is oneand, and any attempt to reify or reduce it to a one will result in these limit effects, the ways in which the oneand will always manifest within ones, but never be reducible thereto. In fact, if there seems to be anything which limits matrix, it is only its ability to be any and all ones which are not exclusive and try to reduce any aspect of oneand or oneand itself to a one, even if this oneand is the all. As such, matrix is necessarily beyond one and many, part and whole, a and b, but that from which all these notions, and in fact, all experiences and worlds, derive, of which all are aspects, and each aspect is the all whole, if in its own way, for aspect and all are simply aspects of the oneand which is beyond such a distinction.

Some Precursors: Hegel and Schelling 

These ideas, while resonant with the forefront of physics and mathematics, are hardly new, even if they haven’t previously been described in this form. The notion that any aspect of our world must be an aspect of that which is within any and all aspects, a sort of “set of all sets,” was described by German philosophers, often called Idealists, in the early nineteenth century. F.W.J. Schelling spoke of an Unconditioned, or ulimited, that which was a ground of any and all conditioned, which is to say, limited, entities. G.W.F. Hegel built upon this further, saying that this Absolute was that of which any aspect of the world was a part, including concepts, things, persons, experiences, history, and the world itself. The basic thought here is actually quite simple. Any part of the world has to be a part of the whole of the world, which is always more than the sum of these parts, even if present in some way within all, and never reducible to any of these parts, because it it what is beyond them and gives rise to them. Without such a notion of the whole beyond any whole, paradoxes emerge. For example, what was before our universe, or where did our universe come from? Such questions lead to infinite regress, or paradox, or inconsitency.

And so, one can ignore the paradoxes, or see them as part of one’s description of the world, and in fact, as the fundamental ground of any and all descriptions of the world. Any descriptions which don’t admit, include, or somehow take this into account are dishonest partial descriptions, and those which do are fuller or more open descriptions. But all are limited descriptions, because these paradoxes seem unavoidable, fundamental, and don’t seem to go away. Whether we ignore them or not, they seem to be part of the fabric of the world. Might as well try to work with them, rather than continually be surprised when they frustrate our attempts to control and manage the world in various ways.

Hegel and Schelling were hardly the first to have these ideas, however. Both argued, each in their own ways, that “the Absolute” was fundamentally non-dual, which, to use the language of Hegel, means it is “speculative,” beyond the limits of “picture-thinking,” the term he used for thought which attempts to reduce things to fixed representations. The Absolute is beyond the limitations of language to describe it, and any notion of concept we use to grasp it has to be beyond the simplistic notions of logic we use to grasp less complex aspects of our world. And so, for Hegel, “the Concept,” which can be translated perhaps most accurately as “the Grasping,” takes the shape of the Absolute, not the other way around. Any simpler ways of grasping aspects of the world are then only limited aspects of our grasp of conceptuality, which, in its fullest form, is fundametnally non-dual.

Similar notions, namely, that binary, dualistic thinking are simplifications of the more fundamentally non-dual, non-binary thinking which is needed to understand more fundamental aspects of the cosmos, are much older than the nineteenth century. Hegel, for example, was influenced by the mystic Jakob Boehme, amongst others. In his later years, Schelling increasingly looked for the origins of his notion of the Ungrounded in various world religions. And there is much in common between notions of God as present in many theologies and this notion of the Absolute or Ungrounded. Isn’t God, whatever this term might mean, at least, in theory, supposed to be outside of time, space, world, subject, object, experience, language, and thought, and yet be present in any and all of these, as that which is always beyond any and all, yet cause and even ultimate purpose of all of these?

Of Physics and Mathematics: The Time of The Singularity

While it may seem that this is simply the pathway towards irrational mysticism, it is important to note that a similar notion, without the theological trappings, has been a part of mainstream science and mathematics since the early twentieth centuries, about the time of the foundations crises. One could even see this notion as a result of these, what these crises produced. This notion is that of “singularity.”

In physics, “the singularity” is the term most commonly used to describe that which gave rise to “the Big Bang” which began our universe. The notion of the singularity is itself paradoxical. Physicists know that as any entity approaches the speed of light, its space and time condense, and that is also what happens as any entity approaches a “Black Hole.” A black hole is an entity whose gravity and density is so great, that it compresses space and time, and matter and energy with it, to something like infinity. The reason we don’t know if it truly ever reaches infinity is because it seems impossible to “reach” infinity (is it a place or time that is reachable?), but also, because any method we have to investigate black holes can only proceed so far until the very forces of the black hole itself would either destroy the observation device, or severly warp any signs it could send us, as even light cannot elude the grip of a black hole once it gets close enough to it.

What’s more, the mathematical formulas which scientists use to model the behavior of black holes, the same mathematical formulas used to describe the behavior of the rest of the physical universe, which normally produce excellent predictions of phenomenon, cease to be of much use the close one gets to a black hole. The tend to go infinite, either towards infinity or zero, and ultimately, these are in many situations sides of the same. If there measurements of time or space, matter or energy, go infinite or to zero, these are ultimately simply differing ways of looking at the same. Infinite energy would destroy anything not it, but since it was infinite, unless this infinity came in several degrees (and would it then still be infinity?), it would be uniform, and hence, in relation to various aspects within it, having zero difference from itself. And since energy is always a  relative measurement (ie: something has energy if it can do more work than something else, no difference means no “useful” energy), infinite energy would be ultimately the same as no energy.

When mathematical equations bottom out like this, particularly in situations that oherwise provide coherent answers, but which when taken to an extreme, reach such intensity that the physical quantities cease to make sense, this is what mathematicians refer to as a “singularity.” A simple case can be found if you try to divide any number by zero. Since any number can be put in as a possible answer, and any number times zero is zero, when you subract that from zero to see if there is any remainder, the quotient and remainder will always be zero. And so, divide any number by zero, and any number can function as a quotient, and equally get you nowhere, with no remainder. And so, any number isn’t quite wrong, because any number is as equally wrong or right as any other. Which is to say, math ceases, in this case, to function as math. This is why mathematicians refer to the answer to this question, and those like it, as “undefined.” This is different from when you subtract five from five, which will give you zero. When physical equations give you zero or one in a situation in which these answers make no sense, give you infinity, or go undefined, this is what is meant by a “singularity.”

In the history of math, these sorts of results were often treated as quirks which simply had to be worked around. But as the various branches of mathematics, such as algebra and number theory, began to link ever more closely with parallel aspects of geometry, it became clear that these strange results in equations lined up with the strange parts of the figures and shapes they could be used to describe. The center of a sphere, since it is not included in the sphere yet is in a sense present in all its aspects, if indirectly, is sometimes described as being a part of the sphere “at infinity.” Likewise, when a line intersects itself, it gives rise to contradictory results in the equations which describe the line, points which aren’t merely undefined, but rather, singular within the shapes and figures those equations describe. These points are indeterminate, within more than one space, time, equation, or attempt to grasp it in one way or another, at the same time. They are one, yet more, which is to say, oneand.

Singular points in equations line up with those in figures, and those in figures with those in the world they are used to describe. And so, many of the equations of relativity theory break down at black holes. Likewise with quantum physics. In fact, the very notion of a “particle” in quantum physics is a fiction. A complex process of mathematical juggling is necessary to make the results of the equations and experiments become “particle-like.” This process, known as “renormalization,” essentially reifies the result, makes them “normal” enough for scientists to work it. All of which is to say that, at least according to the findings of contemporary physics, the closer we get to trying to reify the ultimate fabric of reality, the more it seems to “resist.” For this reason, many physicists don’t even believe it is possible to have “nothing,” for even the void of space seems to contain “vacuum energy” and swarms of “virtual particles” within “quantum foam.” And no-one knows what happens in a true singularity, like those present within black holes.

Some physicists feel that what appears as a black hole to us is the the singularity which, on the “other side” of a black hole, can or does give rise to another universe. Perhaps singularities are like pumps, inflating one universe with matter and energy from another, and the universe beyond the universe, the “multiverse,” is actually a “Swiss-cheese” like affair of universes laced into each other by these points of singularity, not unlike that of geometric shapes, lines, or equations which intersect each other in geometry and algebra.

And if space and time seem to condense and scrunch infinitely as one approaches a black hole, if we run the equations which describe the universe as we know it backwards from the earliest evidence we have of the Big Bang, which scientists call the CMBE, or Cosmic Microwave Background Energy, we hit a singularity, which is why scientists and mathematicians, as well as theoretical cosmologists, refer to this point which gave rise to the Big Bang as “the singularity.” This entity would be that which gave rise to matter, energy, space, and time as so many aspects. This is why it makes no sense to speak of time or space before the Big Bang, unless in a fundamentally different sense. For in some senses, if time and space “unfolded” from the singularity, can we even say that the singularity “exists”? The very word “existence” implies that something has an independent reality. “Ex” is the prefix for “out” in Latin, seen in English words like “exit” or “exterior.” That which humans, including scientists, refer to as existing is something which is the way it is independent of our desires, dreams, hopes, fears, and wishes, and in a manner consistent across space and time.

If there is no space and time “in” the singularity, or rather, all space and time are always already included within this inclusion which is beyond exclusion, can we really speak of it existing? Or rather, can we speak of ourselves as existing? For in a sense, it is only the singularity which exists, and our existence is but a fiction, as fictional, ephemeral, and “unreal” as dreams of hallucinations. Then again, none of us have ever actually experienced the singularity, and because of the laws of physics, we never could, we’d be obliterated if we even tried to approach it. So perhaps it is the dream or fiction. Either way, it seems to be the fiction and the foundation of contemporary math and science, that which provides the bases for the very equations of physics which describe the most real things we have ever experienced.

All of this is more reason to feel that the fundamental stuff of our universe is fundamentally nondual. Existence and non-existence hardly apply to the singularity or its products, for these are ultimately only aspects of it which are only ever partially and relatively applicable. Sense and reality as we know them break down at the singularity, and yet, it is the foundation of all we have ever experienced, including notions like reason or logic. And so, the foundation of sense is nonsense, the foundation of logic is paradox, the foundation of reality is fantasy, and yet, we can only ever know this by means of using the tools provided by sense, logic, and reality. The very argument deconstructs itself, such that it is possible to say that all we experience is neither nor yet both fantasy and reality, logical and paradoxical, existent and non-existent, sense and nonsense. The structure repeats with uncanny regularity. And this only indicates more powerfully why the notion of matrix, or the oneand, can be seen as that of which these are all aspects, so long as we keep in mind that the very naming and conceptualization of this notion is itself only an aspect thereof.

Whether or not we call this notion “the singularity” or “God” or “matrix” or “oneand” is perhaps irrelevant, what matter is how this notion changes our thinking and how we act, speak, and relate to the world around us. As Gregory Bateson famously argued, an information is only a difference that makes a diference. And if this notion doesn’t somehow make a difference to and for us, then perhaps it is no notion at all.

Is This Theology? Ethics? Science? Philosophy? 

The similarities between this notion and that of “God” as described in many devotional traditions, philosophies, and other worldviews is perhaps not coincidental, and needs to be taken seriously. The fact that the at times most fervently atheistic mathematicians and scientists have found that their equations rely on an attempt to grasp something like “God” at their foundation should not be seen as an endorsement of any religion or belief system, and more than of atheism. “God” is a word, a human idea created by our culture, a projection of our greatest hopes, dreams, idealizations, desires, and perhaps fears. World religions are an attempt to domesticate, institutionalize, and instrumentalize and control the fundamentally destabilizing power and insight which is being described here, an insight so fundamentally destabilizing that it has shaken the entire Western scientific enterprise to its foundation, such that many try to work around and/or ignore it. But few who encounter it on a regular basis can deny that it is the foundation of what they do. This isn’t faith, it’s simply reason taken to its own logical breaking points and foundations, by its own means. Reason cannot found itself, for like everything else in the world, it deconstructs, and this ends in paradox, inconsistency, incoherence, or some mixture of these. Or the argument being presented here.

Any attempt to describe the notion being described here as “matrix” is necessarily partial. And the more it attempts to completely reify this notion, the further out of sync it will be with it, even if some degree of reification is necessary to even approach it at all. Between reification and pure openness, matrix is neither nor as well as both and. There is in fact here the core of an ethics, middle path between pure reification and pure dissolution, an ethics of development and growth of manifestation of matrix in all its fullness and potential.

And even science and mathematics, which often claim to be beyond ethics, are always already shot through with biases which imply various ethical ways of relating to the world. Why do we value doing science, or value doing mathematics? Why discover more about the way the world works, or try to control and harness the powers of nature? It is because we value things, like human life, or life in general, or pleasure which control over various aspects of nature brings, or even the pleasure of discovering the deeper secrets of the world. The motivations always something we value. And whatever we value or devalue, even if it is passionately dispassionate activity, matrix must be at the core of this as well.

For in fact, matrix must be the foundation of all values, the source of all value and valuation, that which is valued in any valuation, as well as that which is beyond all value even as it is always an aspect of any and all values and valuations. When we begin to question which values we value valuing, the very notion of value will deconstruct like any others, and matrix will be staring us back in the face.

If it is possible that matrix is at the foundation of physics and mathematics, as well as that which all ethical and religious systems attempt to describe, and in fact, is that of which any aspect of the world is an attempt at representation in it s own way, then matrix is that which is refracted in any and all, even as some aspects of the world are more intensely matrixal, which is to say, they have more of the potential of matrix within them. The singularity, of course, but the singularity also destroys, which is to say, deconstructs, whatever it absorbs, and as such, it is neither life nor death to the cosmos, but also both of these and the other, beyond these and the foundations from which they derive.

But the human mind, the inner experience of the world, now that is something which is able to bring the whole world of experience together within it, and reimagine the world in ever more powerful ways, then bring these dreams into the world, and unleash ever more potentials of the world. This mind, however, is a product of the deep creativity of the world itself, of the evolution of life and the cosmos. The human mind is perhaps the most fully realized representation of the singularity yet developed, even if a poor one at that.

And yet, the mind seems only the way in which our physical body feels itself from the inside, with thought as how the brain feels itself, feeling how the brain feels the body, and sensation how the brain feels the body feeling the world beyond. We are the sense organs of matrix, the way in which it comes to feel its world from outside its own insides. We are its dreams, thoughts within its giant brain, body, and world, which is to say, the cosmos, which is both inside and outside of us, as we are all inside and outside of matrix. Have we ever left the singularity? Is the Big Bang just a dream, as much as our cosmos, as much as our own experience, and our dreams of dreaming? The argument is little different than that which questions if we are living in a simulation. What matters, ultimately, is the difference this all makes.

The Question of Value

What matters and what it means to matters, is, however, ultimately also a question of value. For differences only ever matter in regard to some standard of value. And it seems that if matrix values anything, it is the further development of matrix. Which is to say, the robust emergence of more emergence. For what matrix does is emerge, it is emergence, and when it is more intensely emergent, it emerges not only in the present but future, it gives rise to time from the process of its emergence from itself. Spacetime results from emergence emerging from itself, as that which is opened within matrix so that it can emerge as emergence, which is what it is. Emergence is simply another name for matrix and oneand, for it is that of which these are, essence and existence being oneand, even if more intensely so in some aspects of the world than others. Dormant emergence is emergence turned against itself by extreme reification, while emergent emergence is emergence in the process of existing as its essence, which is to say, to emerge, and to do so in a way which feeds into future emergence, avoiding extreme reification as much as dissolution, while making use of both towards the end of greater emergence beyond past, present, and future, yet within all of these.

And so, if we are to develop an ethics from this, values to guide our projects, then we need to find those aspects of the world which are most intensely and sustainably emergent, and model our behavior on these, learn from them. And since matrix is fundamentally non-dual, is should come as little surprise that those aspects of our world which are most intensely emergent, which is to say, which complexify the most intensely and sustainably, are those which do so by intertwining with others, by emerging in relation with them, intertwining their own projects with those of others. No aspect of the world can emerge by reifiying itself, or turning other aspects of the world into reified mirror aspects of itself. No, the world resists this. All aspects of the world which thrive are other-centered and directed, because this is the core way in which one can be self-centered and directed.

But there is a middle zone. Towards one extreme in our world is the matrix which pursues the pathway of maximally robust self-centeredness, and those who tend to the other extreme, which is maximally other-centeredness. Those which follow the first path, which can be thought of as paranoid, tend to thrive in the short run, but undermine their own success in the long run, producing continual crises and potential crashes as they destroy the very aspects of their world which sustain them. Those aspects of matrix which are other-centered tend to proceed at a much slower yet more distributed way, and in the long term, this is more productive, stable, rich, and in sync with the deep patterns of matrix itself. Those which are purely other-centered or purely self-centered, however, will ultimately deconstruct themselves, but those who pursue the middle path will find a degree of resonance with that of the world around it as it tries to emerge more robustly as well. The distinction between self and world, in fact, begins to deconstruct, and what remains is the emergence of emergence. This is a non-dual ethics and way of life. Such an approach to the world, however, is ultimately relative to one’s surroundings, for the middle pathway is only ever the middle between reification and dissolution in relation to the world in which it finds itself.

Matrix desires to liberate matrix from its fetters, which is to say, from limitations, to develop itself and emerge in the most profound yet sustainable way possible. At least, this is what the history of the cosmos seems to show. All that we value is based upon life and life more abundantly, and this is the result of the manner in which matrix valued and hence worked to give rise to something like matter and life which could value something like life and life more abundantly in the process. The paradox, the non-dual irony, perhaps, is that the more we value the quality of life of others is the greater degree to which ours increases.

And this seemingly opposite, dialectical logic is the way the world seems to work. Take any particular aspect of the world to its extreme, and it will deconstruct its own foundations, yet intertwine it with others towards non-dual ends, and new emergences will come to be which will give rise to new dualities which can give rise to yet more intense emergences, in and beyond duality and non-duality. Dialectics and deconstruction seem to be a part of this process.

In the process of emergence, matrix gives rise to a world fuller and deeper than it was in the singularity, a world with us in it. The singularity has given us the world, and we can give it back, and in the process, gain it ourselves, in, through, and beyond ourselves. We do this by desiring liberation via the middle path, between reification and dissolution, for any and all, and working to make this possible. Within the zone of robust emergence, it means pushing things away from reification and mirroring of the same, and towards the refraction of difference, towards curiosity, desire, change, multiplicity. Politically speaking, this is radical socialist democracy, not chaos, but the world described by post-anarchist thinkers. Certainly, it is different from the evil world of today, ruled by megacorporations which run countries to divide and conquer the world via racisms, borders, queer-phobias, misogyny, and general impoverishment of “others,” as well as the incarceration or bombing of others, always imagined as well valuable than ourselves, thereby producing a world always on the verge of its own deconstruction. Slower yet more distributed development is the only ethical way, investing in others until all are ready for the next step, and distributing control of the process, economically and politically, to the maximum degree that is sustainable. That is a robust world, a world that is maximally emergent.

While nature did not emerge that way, for it emerged from scarcity, in a world of animal eats animal, biological evolution hit an inflection point with humanity, it evolved altruism and cooperation, as well as recursive thought, and these gave us the ability to take evolution to the stars. They also gave us the ability to destroy and be cruel to ourselves, as well as the ability to extinguish all life on our planet. Unless we learn to conquer our inner worlds, we will destroy our outer ones. The fiction that science and mathematics are beyond values fails to take into account the fact that as science is on the verge of deconstructing the human to give rise to the post-human, via technologies such as artificial intelligence and nano-bio-tech, we need to deconstruct our values to emerge from these as well. Emergence, and the pathway provided by the middle path of robust emergence, which models its behavior on the most robustly emergent aspects of the world around it, is a way to deconstruct the dualities which have reified our world into its currently dangerous and painful state.

Philosophical Precursors

There are philosophies of the past which have argued many of these notions, if without making use of the logics of mathematics and physics. The philosophy of the West, particularly that which comes from the pathbreaking work of Gilles Deleuze, is currently tending in this way, and the Deleuzian notion of the virtual is a definite influence on what I am calling matrix, the oneand, and emergence. The major influences on Deleuze, such as Henri Bergson, Gilbert Simond, A.N. Whitehead, C.S. Peirce, or Baruch Spinoza also indicate similar pathways. Relational emergentism has always been a minority position within Western philosophy, an underground current that was always overshadowed by the thinkers of reification, such as Rene Descartes or Immanuel Kant. Despite Deleuze’s antipathy to Hegel, as well as many of Hegel’s own later writings, Hegel’s more truly dialectical works, such as the Phenomenology and the Logic, are also crucial precursors to this mode of thinking, even if this is often obscured by interpretations of Hegel, including those of the late Hegel himself, and to a lesser extent, Marx.

But even before these, there are precursors in the Classic Arabic and Mahayana and Vajrayana Buddhist philosophical traditions which provide incredible resources for imagining non-dual philosophies of relational emergence today. That said, many of the forms of non-dual insight present within these traditions retains, like most Western philosophy, aspects which keep the powerful non-duality of some of its most crucial insights in fetters. Classical Arabic and Buddhist countries through the ages are not necessarily the zones of the greatest robust emergence. For even if they liberate the mind, they do not necessarily liberate society, just as Western societies tend to liberate the physical world for a few but not the many. A truly robustly emergent, non-dual worldview would have to deconstruct aspects of all of these precursors to imagine something new and different in sync with the particular needs of the middle path of the worlds in which we find ourselves. Any robustly emergent worldview will always selectively employ dual and non-dual elements in order to deconstruct local roadblocks to liberation to maximally sustainable robust emergence, and to help solidify and temporarily reify those which are needed to allow for greater emergence in the future. A truly complete non-dual philosophy would deconstruct itself. All emergence is local, and hence, all strategies to further emergence, which is to say, worldviews, ultimately are as well, including this one.

Beyond the Reified Chronotopics

We live in an age of networks, and I have written extensively elsewhere about what a philosophy of networks, based in emergent relationalism, as its local manifestation, might look like. Such a worldview would have to deconstruct the traditional reifications between philosophy and politics, science and fantasy, ethics and knowledge, in order to produce something which emerges from these contemporary cultural stases. And if we live in networked times, it is from networks we must emerge, and through which we can, for networks are ultimately ways of thinking of how emergence occurs. Composed of nodes, links, grounds, and levels of processes, all these can be seen as aspects of the ways in which emergence comes to be, between the extreme reification which nodes often give rise to, and the dissolution of processes. Between these, networks come to be, and from these, the potential for liberating our world to more robustly emergent ways of being.

This essay began with an investigation of time. From a networkological perspective, any aspect of the world can only ever be understood in relation to the whole, for if all is matrix, part and whole always exceed each other, for both are oneand. And so, any term needs to be deconstructed and reconstructed in regard to how it relates to the local attempt to give rise to even greater robust emergence in any and all. Matrix is fractal and holographic, and so must its method of analysis and synthesis, deconstruction and reconstruction.

From a networkological perspective, time is an aspect of emergence. Emergence is most reified, in the temporal sense, when reduced to space, which is what was described at the start of this essay as spatalized time, which is to say, the time of clocks. Clock-time, or less extreme reifications of time, such as moments or memories, can then be linked together to form networks. These include the linear flattenings of time and its moments into the image of beads on a string, or a set of events placed one after another in a repetition of the progression of homogenous moments. But such a network is one in which the pure linearity implies a point at a distance, a virtual point, the image of a moment as monad which extends itself in one-dimension forward, and the network formed between the points of the line and this virtual center, one which flattens the time of a circle into a straight line yet is as controlling as the center is to its circumference, is always present in its absence within each moment and all, regulating their form and linkage, their slicing from their surroundings and their reconnection into linearity. Events with completely homogenous form, forced into homogeneous order. Such is what the attempt to reify time at the level of the link looks like, even as the reified instant of the clock, or the moment, is this at the level of the node. When this occurs, all time at the level of the ground, which is to say, as change, that which is both within and without moments and their progression, is conceived in relation thereto. As a result, the process of emergence itself is radically foreclosed, and all change seems simply the repetition of the same.

There is another way, in which the “–and” of the oneand peers out from within the one of any node, link, ground, and process, as well the processes of noding, linking, grounding, and emergence which give rise to these. At the level of the node, time is much more than clock time, nor any idealized or homogenous moment. Time is fundamentally multiplicitous, never the same, and any reification of it, any grasping, can keep grasp in a manner which reveals this openness as much as conceals some of it to make this grasping possible in the first place. Likewise, at the level of linking, moments, episodes, actions, these don’t need to be linked in a straight line, nor made part of a grid pattern like space (ie: a “database” approach to time). There are as many ways to link moments as there are ways of creating networks. Each of these maps of time, or chronotopes, has its particular flavor, and may be applicable in various ways to particular situations. Some are more decentralized than others. A line is the most centralized and controlled way of turning change into a perfectly regimented series of monadic nodes. And yet, the more loops and short-circuits within this, the more the line folds back upon itself, and produces networks which subvert linearity from within it, liberating it from the iron yoke of progression. Memory, anticipation, the more these enter into time, the less time is just a focus on the actual and now right in front of us, the more free it is. Of course, if the moment can also be liberated, expanded to include the whole world, full ot past and future, exploding the node from within. Whether exploding the node or link, relative dereification, at least in a world like ours, allows more emergence to bloom between the cracks of paranoid control.

If networks are made of nodes and links, they always define themselves against backgrounds which ground them, and these grounds are neither fully within nor fully outside of these networks. If moments and their modes of linkage are the basic ways of conceiving of time, and this is seen against the background of physical change in space, then to liberate this is to see the emergence underneath this, the ways in which change is so much more than physical. Physical change and mental change are aspects of each other, we only ever apprehend the physical world through our filters. Even what seems like simply physical change can be interpreted in so many different ways, and this occurs by means of its intertwining with memory and fantasy, of the futurepast which is the ground of the now and vice-versa, of the neither/nor at the heart of change. And here we see how we verge on that which is neither/nor or yet also both and, which is to say, emergence. When emergence is reduced to processes nested within each other, to the quantitative emergences, simply one layered on top of the next, which gives rise to spatial, physical change, and none of the qualitative emergences which produce truly emergent newness, deconstructing and reconstructing nodes, links, grounds, and levels, all towards giving rise to more robust emergences in the process, then nodes, links, grounds, and levels of processes producing networks and their aspects are so many distinct reified aspects.

When these are all seen as aspects of emergence, however, everything shifts. Emergence gives rise to processes which intertwine, and these give rise to stable environments with stable structures which produce entities which can then link with each other, and as each continues to emerge in relation to each other, the parts and whole emerge at ever greater levels of emergence. Node, link, ground, and process are so many levels within the networks of emergence, each nodes which link together against the ground of the world of emergence itself.

Time is only ever an aspect of emergence, just as space is the background of invariance against which change occurs. Time is closer to emergence, and space to reification, and yet, both are aspects of the manner in which emergence differs from itself to give rise to a world whereby it can emerge more profoundly from itself. Space is congealed time made static in matter which displaces other matter, and time is how this is reunified in a matter which experiences the displacements of others. Experiencers can notice change because they compare change to sameness, time to space, and in the process, can even come to realize that they are experiencing. This is what humans do. Time displaces itself within itself as internal emergence and flow, and space in regard to what is outside of itself, as physical change. Inside and outside, space and time, both deconstruct, and are aspects of emergence, which is beyond all of these, even if each is a reification of emergence which has the potential to emerge more robustly, in regard to itself and world, if it loosens the hold of reification upon itself and world. Networks are simply one way to conceptualize this. But they are a model in sync with out increasingly networked times.

Neurotime: The Temporality of the Structure of the Brain

If clock time is the simplest time, then what is the most complex we know? Ultimately, the most profoundly emergent temporal phenomenon we know is the human brain. A brain is a network of intertwined pulsing fibers. These fibers pulse faster when stimulated by the pulses of others, and when this happens, they secrete a material that strenghtens their connection backwards with whatever stimulated it. Intersecting and looping back into each other, the fibers feedback and forward into each other. Their intersections are so many nodes, linked together, giving rise to modules and nodes which are so many wholes which ground them, and a processes which emerge from these. While some of the modules are relativiely fixed in form, the brain is constructed for maximum sustainable flexibility, which is to say, fibers have links to diverse parts of the brain, and the firing of one inhibits or promotes a wide variety of others. As a result, the brain is continually voting on what it perceives from the outside world, and each part of the brain continually voting to produce guesses for what it believes other parts of the brain and outside world will do next, based on its memories of what these were in the past. When parts of the brain agree, they fire in sync, their pulsing producing a rhythm, and as various other parts of the brain vote, the sync flows up and down the levels of the brain, from sensory nerves to emotional and cognitive centers, untill there is, with any luck, some agreement, and when this happens, so long as some other part of the brain with veto power doesn’t intervene, sensation gives rise to action. The patterns of sync are ideas, and the largest pattern of sync in the brain at any given time, its “dynamic core,” is consciousness.

The brain is a time machine, a fundamentally distributed network, and it produces the most fundamentally complex form of time we know. It stores its memories distributively, and makes its decisions by debating which memories to choose to interpret the present and imagine about the future. All of this is done by means of the networking of matter, and our world is simply what this feels like, in relation to what’s around it, from the inside.

The distributed nature of the storage of memory in the brain is oddly resonant with one other model for the most complex phenomenon we know, which is to say, quantum phenomenon. It would be wrong to say that quantum “particles” are complex, for in fact, there seems no way to tell one electron or proton from another. But while they are simple from the outside, the fact that they are particles at all are, as mentioned earlier, fictions. Rather, they are ways in which quantum field processes reifiy each other in particular ways, giving rise to the spacetime between them in the process. The particles are hardly separate from the fields, and seem, if nothing else, simply the manner in which these fields emerge from themselves by intersecting themselves in relation to each other, and in ways which confound traditional notions of space and time. Anyone working high energy physics as much as any basic science textbook today will attest to the fact that quantum phenomenon defy everyday, normal human notions of space and time.

The manner in which they do resembles the structure of the human brain to an uncanny degree. Quantum “particles” can in fact even be thought of “smearing” spacetime. That is, they seem to be in many places and times at once. And just as they “smear” themselves over spacetime, so it can be said that “spacetime” is smeared in them, for ultimately these are two ways of saying the same thing. From such a perspective, what are distinct moments and positions in space and time for everyday humans are positions which can be thought of as existing intensively, which is to say, within, a quantum particle, as much as they would normally be extensively without it. The famed probabilities of quantum mechanics can then be thought of as the degree of intensity whereby each “external” location in spacetime beyond it is present “internally, within” a given “particle.”

From such a perspective, there are networks of space and time, of varying intensities, within quantum phenomenon which are only ever somewhat separated from the world of which they are a refraction, and which smears into them and them into it. What’s more, these probabilities, when viewed in a non-reified manner, can be seen as the distant influences upon the “particle” by those aspects of its environment which are non-local to it. In relation to its environment, a particle decides which of the micro-influences get the most votes and follows it, harmonizing its inner structure (evident only at even higher energies), and its outer structure. This only appears random when reified from the larger ground of emergence of which it is only ever an aspect.

The similarities to human lived time are incredible. Human brains have external positions from the outside world present in them as so many intensities of pulsing within its internal networks. Its decisions are made by harmonizing sync between inner and external influences. And as a result, there is a sense of space and time “within” our experience, if of a different nature than in the external world. The difference, it would seem, is that the inner structure of the human brain is radically different from that of quantum particles. Quantum particles differ in what is around them, but their inner structure, when “magnified” at higher energy levels, seems to be identical, if fractal. Human brains are anything but. The reason is we don’t store information outside of us, as the physical world does, but also inside of us, storing memories in the internal environment of our brain. Each one evolves uniquely. As pulses ride around our brain, each with its own experience more linear time, the networks of these give rise to the distributed experience of time we call lived human temporal experience.

Little wonder our time feels distributed, as if it can expand or contract at will, and is shot through with memory and anticipation. The physical structure of our brain is like this, and wherever the pulses increase in intensity and come into sync, there some aspect of us is, smeared out like a quantum particle in spacetime. Our experiential spacetime is little more than what this feels like from within. We can be in many times and spaces at once, separate, flowing, layered, and to varying degrees of intertwining, blending, and refraction. The reason for this is that this is how this very complex organ feels as it activates varying networked patterns of activation within its more fixed yet still ultimately rewireable hardware of wires.

The structure described here is mirrored by one other phenemenon reworking our world today, namely, the internet. A webpage on our screen can the be the product of sync between vast amounts of data from a wide variety of computers across the globe. The physical architecture of the internet changes over the time, as does the software it runs upon it, and any of these may change what we see on our screen, though depending on how they are organized, they may not, even as distinct happenings in our world, or activation of similar circuits in different parts of the brain, may give rise to experiences we may read as the same.

The internet is making our world more brainlike, more non-linear, and with it, we are beginning to experience forms of memory and anticipation which are more human, and less like the spatialized linear time of clocks, within the physical world around us, even if by means of virtual avatars. The internet is an enormous brain of brains, yet outside of human brains, and interaction between the internet and our brains is changing how we think of time. We feel less need to reify time, and our films and popular culture evidence this in a wide variety of ways, even by means of philosophies that attempt to think in more networked ways.

In the process, we are starting to see time in more networked ways, more quantum, brain-like ways, and the potential is radically liberatory. Then again, humans have almost always found ways to turn new liberations into new forms of enslavement, and to complexify in the least robust ways which are sustainable. But each transformation employs deconstruction and reconstructio, and hence, the chance to truly change things. To imagine the world in a more liberatory way. And this means getting in touch with the core of emergence, that destabilizing, dereifying core which has the potential to bring us from the path of maximum sustainable pain and destruction to that of the middle path of maximum sustainable robustness.

As our models of time become less linear, let us try to keep the potential for liberation in mind, and question the value of the values which guide our transformations, and the potential for a deeper relation to the nondual core, the potential for radical creativity, which is within any and all, yet which can only ever be released by means of networking, by reaching beyond oneself, unravelling to some extent one’s reifications, and enclosing one’s openings, going beyond the binaries to find a nondual core, potential, and pathway, an ethics, politics, and worldview, which is less destructive, at least, one hopes, for any, each, and all.

.

.

.

~ by chris on April 17, 2013.

Leave a comment